Atomistic Modeling of Multimillion Atom Nanostructures
نویسندگان
چکیده
Atomistic calculations of properties of self-assembled quantum dots (SAD) involve computational domains of millions of atoms and their electronic properties cannot at present be computed using ab-initio methods. We present here [1] approach consisting of three major steps: (1) calculation of equilibrium positions of atoms using valence force field model (VFF), (2) calculation of single particle electron and hole states using the linear combination of atomic orbitals tight binding approximation (TB), and (3) inclusion of interactions between quasi-particles by defining an effective Hamiltonian of interacting excited quasiparticles, solved using the configuration interaction method (CI). In the VFF calculation we use the Keating model with material parameters chosen to reproduce bulk elastic constants. The TB parameters for InAs, InP and GaAs are obtained by fitting TB bulk band edges and effective masses to those obtained in experiment or by ab-initio calculations, with the valence band offset built into the parameter set. The strain dependence of TB parameters is fitted to reproduce the dependence of band edges on lattice deformation computed using DFT [2]. The Coulomb matrix elements for CI are obtained with TB wave functions involving ~108 orbitals, with on-site and nearest-neighbour terms computed by approximating the TB basis with Slater orbitals. In the CI step, typically ~104 configurations are used as a basis for each multi-exciton system, while emission spectra are calculated from Fermi’s Golden Rule. We illustrate the method by computing the electronic and optical properties of a lens-shaped and discshaped InAs/InP/GaAs SAD using the VFF approach for 100s of millions of atoms, the 20-band sp3d5s* tight-binding model for millions of atoms and energies, states and emission spectra from up to ten multiexciton complexes obtained in the configuration-interaction method.
منابع مشابه
Interaction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations
In this review, we present our recent results for atomistic mechanisms of damage nucleation and growth and dynamic fracture in silica glass. These results have been obtained with multimillion-to-billion atom, parallel, molecular dynamics simulations of (1) the interaction and coalescence of nanovoids in amorphous silica subjected to dilatational strain and (2) the nucleation, growth and healing...
متن کاملATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations
Cindy L. Rountree, Rajiv K. Kalia, Elefterios Lidorikis,1 Aiichiro Nakano, Laurent Van Brutzel,2 and Priya Vashishta Concurrent Computing Laboratory for Materials Simulations, Department of Physics and Astronomy and Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803-4001; e-mails: [email protected]; [email protected]; [email protected]; p...
متن کاملMultimillion Atom Reactive Simulations of Nanostructured Energetic Materials
For large-scale atomistic simulations involving chemical reactions to study nanostructured energeticmaterials, we have designed linear-scaling molecular dynamics algorithms: 1) first-principles-based fast reactive force field molecular dynamics, and 2) embedded divide-and-conquer density functional theory on adaptive multigrids for quantum-mechanical molecular dynamics. These algorithms have ac...
متن کاملScaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the...
متن کاملBuilding semiconductor nanostructures atom by atom
We present an atomistic tight-binding approach to calculating the electronic structure of semiconductor nanostructures. We start by deriving the strain distribution in the structure using the valence force field model. The strain field is incorporated into the tight-binding electronic structure calculation carried out in the frame of the effective bond orbital model and the fully atomistic sp3d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010